Sport Pump SPF 50+
Ingredients overview
Highlights
Skim through
Ingredient name | what-it-does | irr., com. | ID-Rating |
---|---|---|---|
Homosalate (8%) | sunscreen | ||
Octocrylene (6%) | sunscreen | ||
Octyl Salicylate (5%) | sunscreen | 0, 0 | |
Butyl Methoxydibenzoylmethane (3%) | sunscreen | goodie | |
4-Methylbenzylidene Camphor (2.5%) | sunscreen | icky | |
Phenoxyethanol | preservative | ||
Hydroxybenzoates | preservative |
Cancer Council Sport Pump SPF 50+Ingredients explained
An oil-soluble chemical sunscreen agent that protects the skin from UVB (295-315 nm) with a peak protection at 306 nm. Homosalate is not a strong UV filter in and of itself (gives only SPF 4.3 protection at max. allowed 10% concentration) and it is not photostable (looses 10% of its SPF protection in 45 mins) so it always has to be combined with other sunscreens for proper protection. Its big advantage, though, is that it is a liquid and is excellent for dissolving other hard to solubilize powder sunscreen agents, like the famous Avobenzone.
Regarding Homosalate's safety profile, we do not have the best news. In-vitro (made in the labs) studies have shown that it might have some estrogenic activity. Do not panic, these studies were not conducted on real humans under real world conditions. Still, if you are a 'better safe than sorry' type, be careful when using Homosalate containing sunscreens long-term and full-body.
As of 2020, Homosalate is permitted to be used up to 10% in the EU and 15% in the US, but the EU is currently considering restricting it to only 1.4% (probably taking effect from 2022).
An oil-soluble chemical sunscreen agent that protects skin in the UVB and somewhat in the UVA II range with a peak absorption of 304 nm. Its protection is not strong enough on its own but it is quite photostable (loses 10% of SPF protection in 95 mins) and is often used to stabilize other photo-unstable UV-filters, for example, Avobenzone. It is also often used to improve the water resistance of the products.
Octocrylene's safety profile is generally quite good, though a review study in Contact Dermatitis reports an "increasing number of patients with photo contact allergy to octocrylene." Mainly adults with ketoprofen-sensitivity and children with sensitive skin are affected, so if you have a small kid, it is probably better to use octocrylene-free sunscreens.
A colorless to light yellowish oily liquid that works as a UVB (280-320nm) sunscreen filter with a peak absorbance at 306 nm. It's not a strong filter in itself, it's always used in combination with other sunscreen agents to further enhance the SPF and to solubilize other solid UV filters.
It has a good safety profile and is allowed to be used at a max concentration of 5% both in the US and in Europe (10% is allowed in Japan).
The famous Avobenzone. It is a special snowflake as it is the only globally available chemical sunscreen agent that provides proper UVA protection (in the US, new generation sunscreen agents are not approved because of impossible FDA regulations). It is the global gold standard of UVA protection and is the most used UVA sunscreen in the world.
It gives very good protection across the whole UVA range (310-400 nm that is both UVA1 and UVA2) with a peak protection at 360 nm. The problem with it, though, is that it is not photostable and degrades in the sunlight. Wikipedia says that avobenzone loses 36% of its UV-absorption capacity after just one hour of sunlight (yep, this is one of the reasons why sunscreens have to be reapplied after a few hours).
The cosmetic's industry is trying to solve the problem by combining avobenzone with other UV filters that enhance its stability (like octocrylene, Tinosorb S or Ensulizole) or by encapsulating it and while both solutions help, neither is perfect. Interestingly, the combination of avobenzone with mineral sunscreens (that is titanium dioxide and zinc oxide) is not a good idea. In the US, it is flat out prohibited as avobenzone becomes unstable when combined with mineral sunscreens.
As for safety, avobenzone has a pretty good safety profile. It counts as non-irritating, and unlike some other chemical sunscreens, it shows no estrogenic effect. The maximum concentration of avobenzone permitted is 5% in the EU and 3% in the US.
4-Methylbenzylidene Camphor is a chemical sunscreen agent that protects in the UVB range (290-320 nm) with a peak absorbance at 301 nm. It is an oil-soluble powder that is slightly photo-unstable (it takes 65 minutes to lose 10% of its protecting power and 345 minutes to lose half of it), but it can still help to stabilize the famously unstable UVA filter, avobenzone.
Regarding its safety, we do not have the best news. Two possible concerns are that it absorbs into the body and might have some estrogenic activity there. But do not panic, the latter one was only shown in rats and is probably not the case in humans, and 4-Methylbenzylidene Camphor is considered safe as used. It is legally approved both in the EU and Australia up to 4%, however, it is not approved in the US and in Japan.
Overall, we think there are better UVB filter choices out there than this guy, but if your favorite sunscreen contains it, you should probably just continue to use it.
It’s pretty much the current IT-preservative. It’s safe and gentle, but even more importantly, it’s not a feared-by-everyone-mostly-without-scientific-reason paraben.
It’s not something new: it was introduced around 1950 and today it can be used up to 1% worldwide. It can be found in nature - in green tea - but the version used in cosmetics is synthetic.
Other than having a good safety profile and being quite gentle to the skin it has some other advantages too. It can be used in many types of formulations as it has great thermal stability (can be heated up to 85°C) and works on a wide range of pH levels (ph 3-10).
It’s often used together with ethylhexylglycerin as it nicely improves the preservative activity of phenoxyethanol.
Unless you live under a rock, you have probably heard of parabens. Until about 10 years ago they were the most commonly used preservatives, as they are non-irritating, very effective, and cheap.
Then 2004 came and a research paper came out that tested 20 human breast tumors and found parabens in all of them. This was before the era of social media (btw, it's the year Facebook was founded) but this research still managed to go viral and caused parabens to become the evil, cancer-causing preservative in people's head.
Cosmetic companies do want to do what we want to buy and as we did not want to buy products, containing parabens anymore, they started to use alternatives, like the current IT-preservative, phenoxyethanol. It's much easier to replace parabens than trying to go into lengthy explanations about why the 2004 research is misunderstood and how there are lots of data showing that parabens are totally ok.
As people got so interested, the FDA wrote a little article about parabens stating, " (the)FDA believes that at the present time there is no reason for consumers to be concerned about the use of cosmetics containing parabens."
We think the above is pretty much the gist of the topic but if you feel like reading about parabens all day today, here is a handy list for you to get you started:
- Parabens on Wikipedia
- The perils of parabens by cosmetic chemist Perry Romanowski on the great The Beauty Brains blog
- Spotlight on parabens by Nicki Zevola on the Futerederm blog
- Fact-Check Friday: What’s The Deal with Parabens in Cosmetics? on the great LabMuffin blog
You may also want to take a look at...
what‑it‑does | sunscreen |
what‑it‑does | sunscreen |
what‑it‑does | sunscreen |
irritancy, com. | 0, 0 |
what‑it‑does | sunscreen |
what‑it‑does | sunscreen |
what‑it‑does | preservative |
what‑it‑does | preservative |